Genetic variability at the human FMO1 locus: significance of a basal promoter yin yang 1 element polymorphism (FMO1*6).
نویسندگان
چکیده
The flavin-containing monooxygenases (FMOs) are important for the disposition of a variety of toxicants, therapeutics, and dietary components. Although FMO1 is the dominant isoform in fetal liver and adult kidney and intestine and despite up to a 10-fold intersubject variation in expression, a paucity of information is available on FMO1 genetic variability. To address this issue, 24 samples from the Coriell DNA Polymorphism Discovery Resource Panel were sequenced revealing 10 common single nucleotide polymorphisms (SNPs): four located upstream of the structural gene; three within exonic sequences; one within the intron 1 splice donor site; and two with the 3'-untranslated region. Six of these variants are novel. Compared with other FMO loci within the chromosome 1q23-25 cluster, FMO1 seems more highly conserved. Of the identified FMO1 SNPs, only a C>A transversion 9536 base pairs upstream of the exon 2 ATG start codon (g.-9536C>A) would likely affect function, because it lies within the conserved core binding sequence for the yin yang 1 (YY1) transcription factor. Electrophoretic mobility shift assays demonstrated that the g.-9536C>A transversion eliminated YY1 binding. Furthermore, data from transient expression assays in HepG2 cells suggested this SNP could account for a 2- to 3-fold loss of FMO1 promoter activity. Genotype analysis revealed a g.-9,536A allele (FMO1*6) frequency of 13 and 11% in African- and northern European-Americans, respectively, but a significantly higher frequency of 30% in Hispanic-Americans. Thus, the FMO1*6 variant may account for some of the observed interindividual variation in FMO1 expression.
منابع مشابه
Regulation of Flavin-Containing Monooxygenase
The flavin-containing monooxygenases (FMOs) are important for the oxidation of a variety of environmental toxicants, natural products, and therapeutics. Consisting of six family members (FMO1–5), these enzymes exhibit distinct but broad and overlapping substrate specificity and are expressed in a highly tissueand species-selective manner. Corresponding to previously identified regulatory domain...
متن کاملTargeted sequencing identifies genetic polymorphisms of flavin‐containing monooxygenase genes contributing to susceptibility of nicotine dependence in European American and African American
BACKGROUND Smoking is a leading cause of preventable death. Early studies based on samples of twins have linked the lifetime smoking practices to genetic predisposition. The flavin-containing monooxygenase (FMO) protein family consists of a group of enzymes that metabolize drugs and xenobiotics. Both FMO1 and FMO3 were potentially susceptible genes for nicotine metabolism process. METHODS In ...
متن کاملImmunoquantitation of FMO1 in human liver, kidney, and intestine.
To determine the level of FMO1 protein present in human liver tissues, a monospecific antibody was prepared and a sensitive Western blotting procedure with enhanced chemiluminescence detection was developed. Human FMO1, purified from insect cells expressing the recombinant protein, was used as a protein standard for absolute quantification. The average concentrations of FMO1 in microsomes prepa...
متن کاملIdentification of novel variants of the flavin-containing monooxygenase gene family in African Americans.
Sequence polymorphisms in enzymes involved in drug metabolism have been widely implicated in the differences observed in the sensitivity to various xenobiotics. The flavin-containing monooxygenase (FMO) gene family in humans catalyzes the monooxygenation of numerous N-, P- and S-containing drugs, pesticides, and environmental toxicants. Six genes (FMO1-6) have been identified so far, but the ma...
متن کاملInvestigation of structure and function of a catalytically efficient variant of the human flavin-containing monooxygenase form 3.
To characterize the contribution of amino acid 360 to the functional activity of the human flavin-containing monooxygenase form 3 (FMO3) and form 1 (FMO1) in the oxygenation of drugs and chemicals, we expressed four FMO3 variants (i.e., Ala360-FMO3, His360-FMO3, Gln360-FMO3, and Pro360-FMO3) and one FMO1 variant (i.e., Pro360-FMO1) and compared them to wild-type enzymes (Leu360-FMO3 and His360-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 306 3 شماره
صفحات -
تاریخ انتشار 2003